アンピシリン 125mg(力価)・クロキサシリンナトリウム 125mg(力価)錠 Ampicillin 125mg (potency) and Cloxacillin Sodium 125mg (potency) Tablets

溶出性 $\langle 6.10 \rangle$ 本品 1 個をとり、試験液に水 900mL を用い、パドル法により、毎分 50 回転で試験を行う. 溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径 $0.45\mu m$ 以下のメンブランフィルターでろ過する. 初めのろ液 10 mL を除き、次のろ液を試料溶液とする. 別にアンピシリン標準品及びクロキサシリンナトリウム標準品約 28mg(力価)に対応する量をそれぞれ精密に量り、水に溶かし、正確に 50mL とする. この液 5mL を正確に量り、水を加えて正確に 20mL とし、標準溶液とする. 試料溶液及び標準溶液 $5\mu L$ ずつを正確にとり、次の条件で液体クロマトグラフィー $\langle 2.01 \rangle$ により試験を行い、それぞれの液のアンピシリンのピーク面積 A_{Ta} 及び A_{Sa} 並びにクロキサシリンのピーク面積 A_{Tb} 及び A_{Sb} を測定する.

本品が溶出規格を満たすときは適合とする.

アンピシリン($C_{16}H_{19}N_3O_4S$)の表示量に対する溶出率(%) = $W_{Sa} \times (A_{Ta}/A_{Sa}) \times (1/C_a) \times 450$

クロキサシリンナトリウム($C_{19}H_{17}CIN_3NaO_5S$)の表示量に対する溶出率(%) = $W_{Sb} \times (A_{Tb}/A_{Sb}) \times (1/C_b) \times 450$

 $W_{\mathrm{Sa}}: アンピシリン標準品の秤取量 <math>[\mathrm{mg}(力価)]$

 $W_{\mathrm{Sb}}:$ クロキサシリンナトリウム標準品の秤取量 $[\mathrm{mg}(力価)]$

 C_a :1錠中のアンピシリン($C_{16}H_{19}N_3O_4S$)の表示量 [mg(力価)]

 C_b :1錠中のクロキサシリンナトリウム($C_{19}H_{17}CIN_3NaO_5S$)の表示量 [mg(力価)]

試験条件

検出器:紫外吸光光度計(測定波長:254nm)

カラム:内径 4mm, 長さ 15cm のステンレス管に 5μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:40℃ 付近の一定温度

移動相:水/液体クロマトグラフィー用メタノール/テトラブチルアンモニウムヒドロキシド溶液 $(1\rightarrow 10)$ /薄めたリン酸 $(1\rightarrow 10)$ 混液(250:250:5:1)

流量:アンピシリンの保持時間が約4分になるように調整する.

システム適合性

システムの性能:標準溶液 5μL につき,上記の条件で操作するとき, アンピシリン,クロキサシリンの順に溶出し,その分離度は 4 以 上である. システムの再現性:標準溶液 5μL につき,上記の条件で試験を 6回繰り返すとき,アンピシリン及びクロキサシリンのピーク面積の相対標準偏差はそれぞれ 2.0%以下である.

溶出規格

	表示量	規定時間	溶出率
アンピシリン	125mg(力価)	30 分	85%以上
クロキサシリンナトリウム	125mg(力価)		80%以上

アンピシリン 125mg(力価)・クロキサシリンナトリウム 125mg (力価)カプセル

Ampicillin 125mg (potency) and Cloxacillin Sodium 125mg (potency) Capsules

溶出性 $\langle 6.10 \rangle$ 本品 1 個をとり、試験液に水 900mL を用い、パドル法(ただし、シンカーを用いる)により、毎分 50 回転で試験を行う.溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径 $0.45\mu m$ 以下のメンブランフィルターでろ過する. 初めのろ液 10mL を除き、次のろ液を試料溶液とする.別にアンピシリン標準品及びクロキサシリンナトリウム標準品約 28mg(力価)に対応する量をそれぞれ精密に量り、水に溶かし、正確に 50mL とする.この液 5mL を正確に量り、水を加えて正確に 20mL とし、標準溶液とする.試料溶液及び標準溶液 $5\mu L$ ずつを正確にとり、次の条件で液体クロマトグラフィー $\langle 2.01 \rangle$ により試験を行い、それぞれの液のアンピシリンのピーク面積 A_{Tb} 及び A_{Sb} を測定する.

本品が溶出規格を満たすときは適合とする.

アンピシリン($C_{16}H_{19}N_3O_4S$)の表示量に対する溶出率(%) = $W_{Sa} \times (A_{Ta}/A_{Sa}) \times (1/C_a) \times 450$

クロキサシリンナトリウム($C_{19}H_{17}CIN_3NaO_5S$)の表示量に対する溶出率(%) = $W_{Sb} \times (A_{Tb}/A_{Sb}) \times (1/C_b) \times 450$

 $W_{Sa}: アンピシリン標準品の秤取量 [mg(力価)]$

 $W_{\rm Sb}:$ クロキサシリンナトリウム標準品の秤取量 [mg(力価)]

 $C_a:1$ カプセル中のアンピシリン($C_{16}H_{19}N_3O_4S$)の表示量 [mg(力価)]

 C_b : 1カプセル中のクロキサシリンナトリウム($C_{19}H_{17}CIN_3NaO_5S$)の表示量 [mg(力価)]

試験条件

検出器:紫外吸光光度計(測定波長:254nm)

カラム:内径 4mm, 長さ 15cm のステンレス管に 5μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:40℃ 付近の一定温度

移動相:水/液体クロマトグラフィー用メタノール/テトラブチルアンモニウムヒドロキシド溶液 $(1\rightarrow 10)$ /薄めたリン酸 $(1\rightarrow 10)$ 混液(250:250:5:1)

流量:アンピシリンの保持時間が約4分になるように調整する.

システム適合性

システムの性能:標準溶液 5μ L につき、上記の条件で操作するとき、アンピシリン、クロキサシリンの順に溶出し、その分離度は4以上である.

システムの再現性:標準溶液 5μ L につき、上記の条件で試験を 6 回繰り返すとき、アンピシリン及びクロキサシリンのピーク面積の相対標準偏差はそれぞれ 2.0%以下である.

溶出規格

	表示量	規定時間	溶出率
アンピシリン	125mg(力価)	30 分	80%以上
クロキサシリンナトリウム	125mg(力価)		85%以上