![]() ![]() The imposition of stringent limits on the amounts of lead that may be present in pharmaceutical products has resulted in the use of two methods, of which the one set forth following depends upon extraction of lead by solutions of dithizone. For determination of the content of heavy metals generally, expressed as a lead equivalent, see Heavy Metals
![]() ![]() Select all reagents for this test to have as low a content of lead as practicable, and store all reagent solutions in containers of borosilicate glass. Rinse thoroughly all glassware with warm dilute nitric acid (1 in 2), followed by water.
Special Reagents— ![]() ![]() ![]() ![]() ![]() ![]() Before use, shake a suitable volume of the dithizone extraction solution with about half its volume of dilute nitric acid (1 in 100), discarding the nitric acid.
![]() ![]() ![]() Test Preparation— [note—If, in the following preparation, the substance under test reacts too rapidly and begins charring with 5 mL of sulfuric acid before heating, use instead 10 mL of cooled dilute sulfuric acid (1 in 2), and add a few drops of the hydrogen peroxide before heating.] Where the monograph does not specify preparation of a solution, prepare a Test Preparation as follows. [Caution—Exercise safety precautions in this procedure, as some substances may react with explosive violence when digested with hydrogen peroxide. ] Transfer 1.0 g of the substance under test to a suitable flask, add 5 mL of sulfuric acid and a few glass beads, and digest on a hot plate in a hood until charring begins. Other suitable means of heating may be substituted. (Add additional sulfuric acid, if necessary, to wet the substance completely, but do not add more than a total of 10 mL.) Add, dropwise and with caution, 30 percent hydrogen peroxide, allowing the reaction to subside and again heating between drops. Add the first few drops very slowly, mix carefully to prevent a rapid reaction, and discontinue heating if foaming becomes excessive. Swirl the solution in the flask to prevent unreacted substance from caking on the walls of the flask. [note—Add peroxide whenever the mixture turns brown or darkens.] Continue the digestion until the substance is completely destroyed, copious fumes of sulfur trioxide are evolved, and the solution is colorless. Cool, cautiously add 10 mL of water, evaporate until sulfur trioxide again is evolved, and cool. Repeat this procedure with another 10 mL of water to remove any traces of hydrogen peroxide. Cautiously dilute with 10 mL of water, and cool. Procedure— Transfer the Test Preparation, rinsing with 10 mL of water, or the volume of the prepared sample specified in the monograph to a separator, and, unless otherwise directed in the monograph, add 6 mL of Ammonium Citrate Solution and 2 mL of Hydroxylamine Hydrochloride Solution. (For the determination of lead in iron salts use 10 mL of Ammonium Citrate Solution.) Add 2 drops of phenol red TS, and make the solution just alkaline (red in color) by the addition of ammonium hydroxide. Cool the solution if necessary, and add 2 mL of Potassium Cyanide Solution. Immediately extract the solution with 5-mL portions of Dithizone Extraction Solution, draining off each extract into another separator, until the dithizone solution retains its green color. Shake the combined dithizone solutions for 30 seconds with 20 mL of dilute nitric acid (1 in 100), and discard the chloroform layer. Add to the acid solution 5.0 mL of Standard Dithizone Solution and 4 mL of Ammonia-Cyanide Solution, and shake for 30 seconds: the color of the chloroform layer is of no deeper shade of violet than that of a control made with a volume of Diluted Standard Lead Solution equivalent to the amount of lead permitted in the sample under examination, and the same quantities of the same reagents and in the same manner as in the test with the sample. Auxiliary Information— Please check for your question in the FAQs before contacting USP.
USP32–NF27 Page 136
|