Water-Soluble Vitamins Tablets
DEFINITION
Water-Soluble Vitamins Tablets contain two or more of the following water-soluble vitamins: Ascorbic Acid or its equivalent as Calcium Ascorbate or Sodium Ascorbate, Biotin, Cyanocobalamin, Folic Acid, Niacin or Niacinamide, Pantothenic Acid (as Calcium Pantothenate or Racemic Calcium Pantothenate), Pyridoxine Hydrochloride, Riboflavin, and Thiamine Hydrochloride or Thiamine Mononitrate. Tablets contain NLT 90.0% and NMT 150.0% of the labeled amounts of ascorbic acid (C6H8O6) or its equivalent as sodium ascorbate or calcium ascorbate, biotin (C10H16N2O3S), calcium pantothenate (C18H32CaN2O10), cyanocobalamin (C63H88CoN14O14P), folic acid (C19H19N7O6), niacin (C6H5NO2) or niacinamide (C6H6N2O), pyridoxine hydrochloride (C8H11NO3·HCl), riboflavin (C17H20N4O6), and thiamine (C12H17ClN4OS) as thiamine hydrochloride or thiamine mononitrate.
They do not contain any form of Beta Carotene or Vitamin A, D, E, or K. They do not contain any minerals for which nutritional value is claimed. They may contain other labeled added substances in quantities that are unobjectionable.
STRENGTH
[NoteIn the following assays, where more than one assay method is given for an individual ingredient, the requirements may be met by following any one of the specified methods, the method used being stated in the labeling only if Method 1 is not used. ]
• Ascorbic Acid
Sample solution:
Finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to a nominal amount of 100 mg of ascorbic acid, to a 200-mL volumetric flask, and add 75 mL of metaphosphoricacetic acids TS. Insert a stopper into the flask, and shake by mechanical means for 30 min. Dilute with water to volume. Transfer a portion of the solution to a centrifuge tube, and centrifuge until a clear supernatant is obtained. Pipet 4.0 mL of this solution into a 50-mL conical flask, and add 5 mL of metaphosphoricacetic acids TS.
Analysis:
Titrate with standard dichlorophenolindophenol solution VS to a rose-pink color that persists for at least 5 s. Correct for the volume of dichlorophenolindophenol solution consumed by a mixture of 5.5 mL of metaphosphoricacetic acids TS and 15 mL of water. From the ascorbic acid equivalent of the standard dichlorophenolindophenol solution, calculate the content of ascorbic acid in each Tablet.
Acceptance criteria:
90.0%150.0% of the labeled amount of ascorbic acid (C6H8O6)
• Calcium Ascorbate:
Proceed as directed in Ascorbic Acid.
Acceptance criteria:
90.0%150.0% of the labeled amount of calcium ascorbate (C12H14CaO12·2H2O)
• Sodium Ascorbate:
Proceed as directed in Ascorbic Acid.
Acceptance criteria:
90.0%150.0% of the labeled amount of sodium ascorbate (C6H7NaO6)
• Biotin, Method 1
[NoteUse low-actinic glassware throughout this procedure. ]
Mobile phase:
Mix 85 mL of acetonitrile, 1 g of sodium perchlorate, and 1 mL of phosphoric acid, and dilute with water to 1000 mL.
Standard stock solution:
0.333 mg/mL of USP Biotin RS in dimethyl sulfoxide
Standard solution:
5 µg/mL of USP Biotin RS prepared by diluting the Standard stock solution in water
Sample solution:
Finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to a nominal amount of 1 mg of biotin, to a 200-mL volumetric flask. Add 3 mL of dimethyl sulfoxide, and swirl to wet the contents. Place the flask in a water bath at 6070 for 5 min. Sonicate for 5 min, dilute with water to volume, and filter.
Chromatographic system
Mode:
LC
Detector:
UV 200 nm
Column:
4.6-mm × 15-cm; 3-µm packing L7
Flow rate:
1.2 mL/min
Injection volume:
100 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas of biotin. Calculate the percentage of the labeled amount of biotin (C10H16N2O3S) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of biotin (C10H16N2O3S)
• Biotin, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Dehydrated mixtures yielding formulations similar to the media described herein may be used provided that, when constituted as directed, they have growth-promoting properties equal to or superior to those obtained with the media prepared as described herein.
Standard stock solution:
50 µg/mL of USP Biotin RS in 50% alcohol. Store this solution in a refrigerator.
Standard solution:
0.1 ng/mL of USP Biotin RS in water, prepared by dilution of the Standard stock solution with water on the day of the assay
Sample solution:
Finely powder NLT 30 Tablets. Transfer a portion of the powder, equivalent to 100 µg of biotin, to a 200-mL volumetric flask. Add 3 mL of 50% alcohol, and swirl to wet the contents. Heat the flask in a water bath at 6070 for 5 min. Sonicate for 5 min, dilute with 50% alcohol to volume, and filter. Dilute a volume of the filtrate quantitatively, and stepwise if necessary, with water to obtain a solution with a concentration of 0.1 ng/mL.
Acid-hydrolyzed casein solution:
Mix 100 g of vitamin-free casein with 500 mL of 6 N hydrochloric acid, and reflux the mixture for 812 h. Remove the hydrochloric acid from the mixture by distillation under reduced pressure until a thick paste remains. Redissolve the resulting paste in water, adjust the solution with 1 N sodium hydroxide to a pH of 3.5 ± 0.1, and dilute with water to 1000 mL. Add 20 g of activated charcoal, stir for 1 h, and filter. Repeat the treatment with activated charcoal. Store under toluene in a cool place at a temperature NLT 10. Filter the solution if a precipitate forms during storage.
Cystinetryptophan solution:
Suspend 4.0 g of l-cystine in a solution of 1.0 g of l-tryptophan (or 2.0 g of d,l-tryptophan) in 700800 mL of water. Heat to 7080, and add dilute hydrochloric acid (1 in 2) dropwise, with stirring, until the solids are dissolved. Cool, and dilute with water to 1000 mL. Store under toluene in a cool place at a temperature NLT 10.
Adenineguanineuracil solution:
Dissolve 200 mg each of adenine sulfate, guanine hydrochloride, and uracil, with the aid of heat, in 10 mL of 4 N hydrochloric acid. Cool, and dilute with water to 200 mL. Store under toluene in a refrigerator.
Polysorbate 80 solution:
100 mg/mL of polysorbate 80 in alcohol
Calcium pantothenate solution:
10 µg/mL of calcium pantothenate in 50% alcohol. Store in a refrigerator.
Riboflavinthiamine hydrochloride solution:
20 µg/mL of riboflavin and 10 µg/mL of thiamine hydrochloride in 0.02 N acetic acid. Store under toluene, protected from light, in a refrigerator.
p-Aminobenzoic acidniacinpyridoxine hydrochloride solution:
10 µg/mL of p-aminobenzoic acid, 50 µg/mL of niacin, and 40 µg/mL of pyridoxine hydrochloride in a mixture of neutralized alcohol and water (1:3). Store in a refrigerator.
Salt solution A:
Dissolve 25 g of monobasic potassium phosphate and 25 g of dibasic potassium phosphate in water to make 500 mL. Add 5 drops of hydrochloric acid. Store under toluene.
Salt solution B:
Dissolve 10 g of magnesium sulfate, 0.5 g of sodium chloride, 0.5 g of ferrous sulfate, and 0.5 g of manganese sulfate in water to make 500 mL. Add 5 drops of hydrochloric acid, and mix. Store under toluene.
Basal medium stock solution:
Dissolve anhydrous Dextrose and anhydrous Sodium acetate in the solutions previously mixed according to Table 1, and adjust with 1 N sodium hydroxide to a pH of 6.8. Dilute with water to 250 mL.
Table 1
Stock culture of Lactobacillus plantarum:
Dissolve 2.0 g of yeast extract in 100 mL of water. Add 500 mg of anhydrous Dextrose, 500 mg of anhydrous Sodium acetate, and 1.5 g of agar, and heat the mixture on a steam bath, with stirring, until the agar dissolves. Add 10-mL portions of the hot solution to test tubes, close or cover the tubes, sterilize in an autoclave at 121 for 15 min, and allow the tubes to cool in an upright position. Prepare stab cultures in three or more of the tubes, using a pure culture of Lactobacillus plantarum,1 incubating for 1624 h at a temperature between 30 and 37 held constant to within ±0.5. Store in a refrigerator. Prepare a fresh stab of the stock culture every week, and do not use for Inoculum if the culture is more than 1 week old.
Culture medium:
To each of a series of test tubes containing 5.0 mL of Basal medium stock solution add 5.0 mL of water containing 0.5 ng of biotin. Plug the tubes with cotton, sterilize in an autoclave at 121 for 15 min, and cool.
Inoculum:
[NoteA frozen suspension of Lactobacillus plantarum may be used as the stock culture, provided it yields an Inoculum comparable to a fresh culture. ] Transfer cells from the Stock culture of Lactobacillus plantarum to a sterile tube containing 10 mL of Culture medium. Incubate this culture for 1624 h at a temperature between 30 and 37 held constant to within ±0.5. The cell suspension so obtained is the Inoculum.
Analysis
Samples:
Standard solution and Sample solution
To similar separate test tubes add, in duplicate, 1.0 and/or 1.5, 2.0, 3.0, 4.0, and 5.0 mL of the Standard solution. To each tube and to four similar empty tubes add 5.0 mL of Basal medium stock solution and sufficient water to make 10 mL.
To similar test tubes add, in duplicate, volumes of the Sample solution corresponding to three or more of the levels specified for the Standard solution, including the levels of 2.0, 3.0, and 4.0 mL. To each tube add 5.0 mL of the Basal medium stock solution and sufficient water to make 10 mL. Place one complete set of Standard and sample tubes together in one tube rack and the duplicate set in a second rack or section of a rack, preferably in random order.
Cover the tubes of both series to prevent contamination, and sterilize in an autoclave at 121 for 5 min. Cool. Add 1 drop of Inoculum to each tube, except two of the four tubes containing no Standard solution (the uninoculated blanks). Incubate the tubes at a temperature between 30 and 37 held constant to within ±0.5 until, following 1624 h of incubation, there has been no substantial increase in turbidity in the tubes containing the highest level of Standard during a 2-h period.
Determine the transmittance of the tubes in the following manner. Mix the contents of each tube, and transfer to a spectrophotometer cell. Place the cell in a spectrophotometer that has been set at a specific wavelength of 540660 nm, and read the transmittance when a steady state is reached. This steady state is observed a few seconds after agitation when the galvanometer reading remains constant for 30 s or more. Allow approximately the same time interval for the reading on each tube.
With the transmittance set at 1.00 for the uninoculated blank, read the transmittance of the inoculated blank. With the transmittance set at 1.00 for the inoculated blank, read the transmittance for each of the remaining tubes. If there is evidence of contamination with a foreign microorganism, disregard the result of the assay.
Calculation:
Prepare a standard concentration-response curve as follows. For each level of the Standard, calculate the response from the sum of the duplicate values of the transmittance (SS) as the difference, y = 2.00 SS. Plot this response on the ordinate of cross-section paper against the logarithm of the mL of Standard solution per tube on the abscissa, using for the ordinate either an arithmetic or a logarithmic scale, whichever gives the better approximation to a straight line. Draw the straight line or smooth curve that best fits the plotted points.
Calculate the response, y = 2.00 SU, adding together the two transmittances (SU) for each level of the Sample solution. Read from the standard curve the logarithm of the volume of the Standard solution corresponding to each of those values of y that falls within the range of lowest and highest points plotted for the Standard. Subtract from each logarithm so obtained the logarithm of the volume, in mL, of the Sample solution to obtain the difference, X, for each dosage level. Average the values of X for each of three or more dosage levels to obtain X, which equals the log-relative potency, M¢, of the Sample solution.
Determine the quantity, in µg, of biotin (C10H16N2O3S) in the portion of Tablets taken:
antilog M = antilog (M¢ + log R)
Calculate the percentage of the labeled amount of biotin (C10H16N2O3S) in the portion of Tablets taken:
Result = [(antilog M)/N] × 100
Replication:
Repeat the entire determination at least once, using separately prepared Sample solutions. If the difference between the two log-potencies M is NMT 0.08, their mean, M, is the assayed log-potency of the test material (see Design and Analysis of Biological Assays 111, The Confidence Interval and Limits of Potency). If the two determinations differ by more than 0.08, conduct one or more additional determinations. From the mean of two or more values of M that do not differ by more than 0.15, compute the mean potency of the preparation under assay.
Acceptance criteria:
90.0%150.0% of the labeled amount of biotin (C10H16N2O3S)
• Biotin, Method 3
[NoteUse low-actinic glassware throughout this procedure. ]
Solution A:
Transfer 800 mL of water and 100 mL of triethylamine to a 1000-mL volumetric flask. Add 80 mL of 85% phosphoric acid, and dilute with water to volume.
Mobile phase:
Transfer 80 mL of acetonitrile and 10 mL of Solution A to a 1000-mL volumetric flask. Dilute with water to volume.
Standard solution:
0.6 µg/mL of USP Biotin RS in water. [NoteA portion of the Standard solution will be used to determine the percent recovery of biotin from the Solid-phase extraction procedure. ]
Sample solution:
Finely powder NLT 20 Tablets. Transfer an amount of powdered Tablets to a volumetric flask to obtain a nominal concentration of 0.6 µg/mL of biotin. Add water up to 80% of the flask capacity, and sonicate for 3040 min, with occasional mixing, to dissolve. Dilute with water to volume, and filter. Adjust the pH of the solution with either diluted acetic acid or 0.1 N sodium hydroxide to 6.07.0.
Solid-phase extraction:
[NoteCondition the extraction column specified in this procedure in the following manner. Wash the column with a 2-mL portion of methanol. Equilibrate with a 2-mL portion of water. ]
Separately pipet 5.0 mL of the Sample solution and Standard solution into freshly conditioned solid-phase extraction columns consisting of a mixed-mode packing with a sorbent mass of 60 mg. [NoteThe mixed-mode packing consists of anion-exchange and reversed-phase sorbents. The reverse-phase component is a copolymer of N-vinylpyrrolidone and divinylbenzene. The anion exchange moiety is a trialkylamino group.2 ]
Wash the column with 10 mL of 30% (v/v) methanol in water. Apply an appropriate volume (4.9 mL) of 30% (v/v) methanol in 0.1 N hydrochloric acid to the column. Collect the eluate in a 5-mL volumetric flask, containing 100 µL of 40% (w/v) sodium acetate in water, and dilute with 30% (v/v) methanol in 0.1 N hydrochloric acid to volume.
Chromatographic system
Mode:
LC
Detector:
UV 200 nm
Column:
4.6-mm × 25-cm; packing L1
Flow rate:
2 mL/min
Injection volume:
100 µL
System suitability
Samples:
Standard solution and a portion of Standard solution that has undergone Solid-phase extraction
Suitability requirements
Tailing factor:
NMT 1.5, Standard solution
Relative standard deviation:
NMT 2.0%, Standard solution and Standard solution that has undergone Solid-phase extraction
Recovery:
95%100%, Standard solution that has undergone Solid-phase extraction
Analysis
Samples:
Standard solution and Sample solution that have both undergone Solid-phase extraction
Measure the responses for the biotin peak. Calculate the percentage of the labeled amount of biotin (C10H16N2O3S) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of biotin (C10H16N2O3S)
• Cyanocobalamin, Method 1
[NoteUse low-actinic glassware throughout this procedure. ]
Mobile phase:
Methanol and water (7:13)
Standard stock solution:
10 µg/mL of USP Cyanocobalamin RS in water. [NoteStore this stock solution in a dark place, and discard after 1 week. ]
Standard solution:
1 µg/mL of USP Cyanocobalamin RS from Standard stock solution diluted with water
Sample solution:
Finely powder NLT 30 Tablets. Transfer a portion of the powder, equivalent to 100 µg of cyanocobalamin, to a 250-mL flask. Quantitatively add 100.0 mL of water, and carefully extract for 2 min. Filter 10 mL of the extract, and use the filtrate.
Chromatographic system
Mode:
LC
Detector:
550 nm
Column:
4.6-mm × 15-cm; 5-µm packing L1
Flow rate:
0.5 mL/min
Injection volume:
200 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak responses for cyanocobalamin. Calculate the percentage of the labeled amount of cyanocobalamin (C63H88CoN14O14P) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of cyanocobalamin (C63H88CoN14O14P)
• Cyanocobalamin, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Standard stock solution:
1.0 µg/mL of USP Cyanocobalamin RS in 25% alcohol. Store in a refrigerator.
Standard solution:
Dilute a suitable volume of Standard stock solution with water to a measured volume such that after the incubation period as described in the Analysis, the difference in transmittance between the inoculated blank and the 5.0-mL level of the Standard solution is NLT that which corresponds to a difference of 1.25 mg in dried cell weight. This concentration usually falls between 0.01 and 0.04 ng/mL of Standard solution. Prepare this solution fresh for each assay.
Sample solution:
Finely powder NLT 20 Tablets. Transfer a portion of the powdered Tablets, equivalent to 1.0 µg of cyanocobalamin, to an appropriate vessel containing, for each g of powdered Tablets taken, 25 mL of an aqueous extracting solution prepared just before use to contain, in each 100 mL, 1.29 g of dibasic sodium phosphate, 1.1 g of anhydrous citric acid, and 1.0 g of sodium metabisulfite. Autoclave the mixture at 121 for 10 min. Allow any undissolved particles of the extract to settle, and filter or centrifuge if necessary. Dilute an aliquot of the clear solution with water to obtain a final solution containing vitamin B12 activity approximately equivalent to that of the Standard solution.
Acid-hydrolyzed casein solution:
Prepare as directed in Biotin, Method 2.
Asparagine solution:
Dissolve 2.0 g of l-asparagine in water to make 200 mL. Store under toluene in a refrigerator.
Adenineguanineuracil solution:
Prepare as directed in Biotin, Method 2.
Xanthine solution:
Suspend 0.20 g of xanthine in 3040 mL of water, heat to 70, add 6.0 mL of 6 N ammonium hydroxide, and stir until the solid is dissolved. Cool, and dilute with water to 200 mL. Store under toluene in a refrigerator.
Salt solution A:
Dissolve 10 g of monobasic potassium phosphate and 10 g of dibasic potassium phosphate in water to make 200 mL, and add 2 drops of hydrochloric acid. Store this solution under toluene.
Salt solution B:
Dissolve 4.0 g of magnesium sulfate, 0.20 g of sodium chloride, 0.20 g of ferrous sulfate, and 0.20 g of manganese sulfate in water to make 200 mL. Add 2 drops of hydrochloric acid. Store this solution under toluene.
Polysorbate 80 solution:
Dissolve 20 g of polysorbate 80 in alcohol to make 200 mL. Store in a refrigerator.
Vitamin solution A:
Dissolve 10 mg of riboflavin, 10 mg of thiamine hydrochloride, 100 µg of biotin, and 20 mg of niacin in 0.02 N acetic acid to make 400 mL. Store under toluene, protected from light, in a refrigerator.
Vitamin solution B:
Dissolve 20 mg of p-aminobenzoic acid, 10 mg of calcium pantothenate, 40 mg of pyridoxine hydrochloride, 40 mg of pyridoxal hydrochloride, 8 mg of pyridoxamine dihydrochloride, and 2 mg of folic acid in a mixture of water and neutralized alcohol (3:1) to make 400 mL. Store, protected from light, in a refrigerator.
Basal medium stock solution:
Prepare the medium according to the following formula and directions. A dehydrated mixture containing the same ingredients may be used provided that, when constituted as directed in the labeling, it yields a medium comparable to that obtained from the formula given herein.
Add the ingredients in the order listed in Table 2, carefully dissolving Cystine and Tryptophan in the hydrochloric acid before adding the next eight solutions to the resulting solution. Add 100 mL of water, and dissolve Dextrose, Sodium acetate, and Ascorbic acid. Filter, if necessary. Add the Polysorbate 80 solution, adjust with 1 N sodium hydroxide to a pH of 5.56.0, and dilute with Purified Water to 250 mL.
Table 2
Tomato juice preparation:
Centrifuge commercially canned tomato juice so that most of the pulp is removed. Suspend 5 g/L of analytical filter aid in the supernatant, and pass, with the aid of reduced pressure, through a layer of the filter aid. Repeat, if necessary, until a clear, straw-colored filtrate is obtained. Store under toluene in a refrigerator.
Culture medium:
[NoteA dehydrated mixture containing the same ingredients may be used provided that, when constituted as directed in the labeling, it yields a medium equivalent to that obtained from the formula given herein. ] Dissolve 0.75 g of yeast extract, 0.75 g of dried peptone, 1.0 g of anhydrous dextrose, and 0.20 g of monobasic potassium phosphate in 6070 mL of water. Add 10 mL of Tomato juice preparation and 1 mL of Polysorbate 80 solution. Adjust with 1 N sodium hydroxide to a pH of 6.8, and dilute with water to 100 mL. Place 10-mL portions of the solution in test tubes, and plug with cotton. Sterilize the tubes and contents in an autoclave at 121 for 15 min. Cool as rapidly as possible to avoid color formation resulting from overheating the medium.
Suspension medium:
Dilute a measured volume of Basal medium stock solution with an equal volume of water. Place 10-mL portions of the diluted medium in test tubes. Sterilize, and cool as directed for Culture medium.
Stock culture of Lactobacillus leichmannii:
To 100 mL of Culture medium add 1.01.5 g of agar, and heat the mixture on a steam bath, with stirring, until the agar dissolves. Place 10-mL portions of the hot solution in test tubes, cover the tubes, sterilize at 121 for 15 min in an autoclave, and allow the tubes to cool in an upright position. Inoculate three or more of the tubes by stab transfer of a pure culture of Lactobacillus leichmannii.3 [NoteBefore first using a fresh culture in this assay, make NLT 10 successive transfers of the culture in a 2-week period. ] Incubate for 1624 h at a temperature between 30 and 40 held constant to within ±0.5. Store in a refrigerator.
Prepare fresh stab cultures at least three times each week, and do not use them for preparing the Inoculum if more than 4 days old. The activity of the microorganism can be increased by daily or twice-daily transfer of the stab culture, to the point where definite turbidity in the liquid Inoculum can be observed 24 h after inoculation. A slow-growing culture seldom gives a suitable response curve and may lead to erratic results.
Inoculum:
[NoteA frozen suspension of Lactobacillus leichmannii may be used as the stock culture, provided it yields an Inoculum comparable to a fresh culture. ] Make a transfer of cells from the Stock culture of Lactobacillus leichmannii to two sterile tubes containing 10 mL each of the Culture medium. Incubate these cultures for 1624 h at a temperature between 30 and 40 held constant to within ±0.5. Under aseptic conditions centrifuge the cultures, and decant the supernatant. Suspend the cells from the culture in 5 mL of Suspension medium, and combine. Using sterile Suspension medium, adjust the volume so that a 1-in-20 dilution in saline TS produces 70% transmittance when read on a suitable spectrophotometer that has been set at a wavelength of 530 nm, equipped with a 10-mm cell, and read against saline TS set at 100% transmittance. Prepare a 1-in-400 dilution of the adjusted suspension using sterile Basal medium stock solution. [NoteThis dilution may be altered, when necessary, to obtain the desired test response. ] The cell suspension so obtained is the Inoculum.
Calibration of spectrophotometer:
Check the wavelength of the spectrophotometer periodically, using a standard wavelength cell or other suitable device. Before reading any tests, calibrate the spectrophotometer for 0% and 100% transmittance, using water, the wavelength set at 530 nm.
Analysis
Samples:
Standard solution and Sample solution
Because of the high sensitivity of the test organism to minute amounts of vitamin B12 activity and to traces of many cleansing agents, cleanse meticulously by suitable means, followed preferably by heating at 250 for 2 h, using hard-glass 20-mm × 150-mm test tubes and other necessary glassware.
To separate test tubes add, in duplicate, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 mL of the Standard solution. To each of these tubes and to four similar empty tubes add 5.0 mL of Basal medium stock solution and sufficient water to make 10 mL.
To similar separate test tubes add, in duplicate, 1.0, 1.5, 2.0, 3.0, and 4.0 mL of the Sample solution. To each tube add 5.0 mL of Basal medium stock solution and sufficient water to make 10 mL. Place one complete set of Standard and sample tubes together in one tube rack and the duplicate set in a second rack or section of a rack, preferably in random order.
Cover the tubes to prevent bacterial contamination, and sterilize in an autoclave at 121 for 5 min, arranging to reach this temperature in NMT 10 min by preheating the autoclave if necessary. Cool as rapidly as possible to avoid color formation resulting from overheating the medium. Take precautions to maintain uniformity of sterilizing and cooling conditions throughout the assay, because packing the tubes too closely in the autoclave or overloading it may cause variation in the heating rate.
Aseptically add 0.5 mL of Inoculum to each tube so prepared, except two of the four containing no Standard solution (the uninoculated blanks). Incubate the tubes at a temperature between 30 and 40, held constant to within ±0.5, for 1624 h.
Terminate growth by heating to a temperature NLT 80 for 5 min. Cool to room temperature. After agitating contents, read the transmittance at 530 nm when a steady state is reached. This steady state is observed a few seconds after agitation when the reading remains constant for 30 s or more. Allow approximately the same time interval for the reading on each tube.
With the transmittance set at 100% for the uninoculated blank, read the transmittance of the inoculated blank. If the difference is greater than 5%, or if there is evidence of contamination with a foreign microorganism, disregard the results of the assay.
With the transmittance set at 100% for the uninoculated blank, read the transmittance of each of the remaining tubes. Disregard the results of the assay if the slope of the standard curve indicates a problem with sensitivity.
Calculation:
Prepare a standard concentration-response curve by the following procedure. Test for and replace any aberrant individual transmittances. For each level of the Standard, calculate the response from the sum of the duplicate values of the transmittances (SS) as the difference, y = 2.00 SS. Plot this response on the ordinate of cross-section paper against the logarithm of the mL of Standard solution per tube on the abscissa, using for the ordinate either an arithmetic or a logarithmic scale, whichever gives the better approximation to a straight line. Draw the straight line or smooth curve that best fits the plotted points.
Calculate the response, y = 2.00 SU, adding together the two transmittances (SU) for each level of the Sample solution. Read from the standard curve the logarithm of the volume of the Standard solution corresponding to each of those values of y that falls within the range of the lowest and highest points plotted for the Standard. Subtract from each logarithm so obtained the logarithm of the volume, in mL, of the Sample solution to obtain the difference, X, for each dosage level. Average the values of X for each of three or more dosage levels to obtain X, which equals the log-relative potency, M¢, of the Sample solution.
Determine the quantity, in µg, of cyanocobalamin (C63H88CoN14O14P) in the portion of Tablets taken:
antilog M = antilog (M¢ + log R)
Calculate the percentage of the labeled amount of cyanocobalamin (C63H88CoN14O14P) in the portion of Tablets taken:
Result = [(antilog M)/N] × 100
Replication:
Repeat the entire determination at least once, using separately prepared Sample solutions. If the difference between the two log-potencies M is NMT 0.08, their mean, M, is the assayed log-potency of the test material (see Vitamin B12 Activity in Design and Analysis of Biological Assays 111, The Confidence Interval and Limits of Potency). If the two determinations differ by more than 0.08, conduct one or more additional determinations. From the mean of two or more values of M that do not differ by more than 0.15, compute the mean potency of the preparation under assay.
Acceptance criteria:
90.0%150.0% of the labeled amount of cyanocobalamin (C63H88CoN14O14P)
• Folic Acid, Method 1
[NoteUse low-actinic glassware throughout this procedure. ]
Reagent A:
25% solution of tetrabutylammonium hydroxide in methanol
Reagent B:
Transfer 5.0 g of pentetic acid to a 50-mL volumetric flask. Using sonication if necessary, dissolve in and dilute with 1 N sodium hydroxide to volume.
Mobile phase:
2 g of monobasic potassium phosphate in 650 mL of water. Add 12.0 mL of Reagent A, 7.0 mL of 3 N phosphoric acid, and 240 mL of methanol. Cool to room temperature, adjust with phosphoric acid or ammonia TS to a pH of 7.0, dilute with water to 1000 mL, and filter. Recheck the pH before use by adding water or methanol to the prepared Mobile phase to obtain baseline separation of folic acid and the internal standard. The pH may be increased up to 7.15 to obtain better separation. [NoteThe methanol and water content may be varied (between 1% and 3%). ]
Internal standard solution:
Transfer 40 mg of methylparaben to a 1000-mL volumetric flask, and add 220 mL of methanol to dissolve. Dissolve 2.0 g of monobasic potassium phosphate in 300 mL of water in a separate beaker, quantitatively transfer this solution to the flask containing the methylparaben solution, and add an additional 300 mL of water. Add 19 mL of Reagent A, 7 mL of 3 N phosphoric acid, and 30 mL of Reagent B. Adjust with ammonia TS to a pH of 9.8, bubble nitrogen through the solution for 30 min, dilute with water to volume, and mix.
Standard solution:
0.016 mg/mL of USP Folic Acid RS in Internal standard solution
Sample solution:
Finely powder NLT 30 Tablets. Transfer a portion of powder, equivalent to 0.4 mg of folic acid, to a 50-mL amber-colored centrifuge tube. Add 25.0 mL of Internal standard solution. Shake by mechanical means for 10 min, and centrifuge. Filter a portion of the clear supernatant, and use the filtrate.
Chromatographic system
Mode:
LC
Detector:
UV 280 nm
Column:
3.9-mm × 30-cm; packing L1
Flow rate:
1 mL/min
Injection volume:
15 µL
System suitability
Sample:
Standard solution
[NoteThe relative retention times for folic acid and methylparaben are about 0.8 and 1.0, respectively. ]
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for folic acid and methylparaben. Calculate the percentage of the labeled amount of folic acid (C19H19N7O6) in the portion of Tablets taken:
Result = (RU/RS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of folic acid (C19H19N7O6)
• Folic Acid, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Diluent:
60 µg/mL of ammonium hydroxide
Mobile phase:
Transfer 0.4 mL of triethylamine, 15.0 mL of glacial acetic acid, and 350 mL of methanol to a 2000-mL volumetric flask, and dilute with 0.008 M sodium 1-hexanesulfonate to volume.
Standard stock solution:
60 µg/mL of USP Folic Acid RS in Diluent. Prepare this solution fresh daily.
Standard solution:
Mix 5.0 mL of Standard stock solution with 10.0 mL of a mixture of methanol and glacial acetic acid (9:1) and 30.0 mL of a mixture of methanol and ethylene glycol (1:1). Shake for 15 min in a water bath maintained at 60, and cool. Filter, discarding the first few mL of the filtrate.
Sample solution:
Transfer a portion of finely powdered Tablets, equivalent to 0.3 mg of folic acid, to a 125-mL stoppered flask. Add 10.0 mL of a mixture of methanol and glacial acetic acid (9:1) and 30.0 mL of a mixture of methanol and ethylene glycol (1:1). Shake for 15 min in a water bath maintained at 60, and cool. Filter, discarding the first few mL of the filtrate.
Chromatographic system
Mode:
LC
Detector:
UV 270 nm
Column:
4.6-mm × 25-cm; packing L7
Column temperature:
50
Flow rate:
2 mL/min
Injection volume:
5 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 2.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the areas of the major peaks. Calculate the percentage of the labeled amount of folic acid (C19H19N7O6) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of folic acid (C19H19N7O6)
• Calcium Pantothenate, Method 1
Mobile phase:
Phosphoric acid and water (1:1000)
Internal standard solution:
80 mg of p-hydroxybenzoic acid in 3 mL of alcohol. Add 50 mL of water and 7.1 g of dibasic sodium phosphate, and dilute with water to 1000 mL. Adjust with phosphoric acid to a pH of 6.7.
Standard solution:
0.6 mg/mL of USP Calcium Pantothenate RS in Internal standard solution
Sample solution:
Finely powder NLT 30 Tablets. Transfer a portion of the powder, equivalent to 15 mg of calcium pantothenate, to a centrifuge tube. Add 25.0 mL of the Internal standard solution, and shake vigorously for 10 min. Centrifuge, filter, and use the clear filtrate.
Chromatographic system
Mode:
LC
Detector:
UV 210 nm
Column:
3.9-mm × 15-cm; packing L1
Flow rate:
1.5 mL/min
Injection volume:
10 µL
System suitability
Sample:
Standard solution
[NoteThe relative retention times for calcium pantothenate and p-hydroxybenzoic acid are about 0.5 and 1.0, respectively. ]
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for calcium pantothenate and the internal standard. Calculate the percentage of the labeled amount of calcium pantothenate (C18H32CaN2O10) in the portion of Tablets taken:
Result = (RU/RS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of calcium pantothenate (C18H32CaN2O10)
• Calcium Pantothenate, Method 2
Standard stock solution:
Dissolve 50 mg of USP Calcium Pantothenate RS, previously dried and stored in the dark over phosphorus pentoxide and protected from absorption of moisture while weighing, in 500 mL of water in a 1000-mL volumetric flask. Add 10 mL of 0.2 N acetic acid and 100 mL of sodium acetate solution (1 in 60), and dilute with water to volume to obtain a concentration of 50 µg/mL of USP Calcium Pantothenate RS. Store under toluene in a refrigerator.
Standard solution:
On the day of the assay, dilute a volume of Standard stock solution with water to obtain a concentration of 0.010.04 µg/mL of calcium pantothenate, the exact concentration being such that the responses obtained as directed in the Analysis, 2.0 and 4.0 mL of the Standard solution being used, are within the linear portion of the log-concentration response curve.
Sample solution:
Finely powder NLT 30 Tablets. Transfer a portion of the powder, equivalent to a nominal amount of 50 mg of calcium pantothenate, to a 1000-mL volumetric flask containing 500 mL of water. Add 10 mL of 0.2 N acetic acid and 100 mL of sodium acetate solution (1 in 60), dilute with water to volume, and filter. Dilute a volume of this solution to obtain a solution with approximately the same concentration as that of the Standard solution.
Acid-hydrolyzed casein solution:
Mix 100 g of vitamin-free casein with 500 mL of 6 N hydrochloric acid, and reflux the mixture for 812 h. Remove the hydrochloric acid from the mixture by distillation under reduced pressure until a thick paste remains. Redissolve the resulting paste in water, adjust the solution with 1 N sodium hydroxide to a pH of 3.5 ± 0.1, and dilute with water to 1000 mL. Add 20 g of activated charcoal, stir for 1 h, and filter. Repeat the treatment with activated charcoal. Store under toluene in a cool place at a temperature NLT 10. Filter the solution if a precipitate forms during storage.
Cystinetryptophan solution:
Suspend 4.0 g of l-cystine in a solution of 1.0 g of l-tryptophan (or 2.0 g of d,l-tryptophan) in 700800 mL of water, heat to 7080, and add dilute hydrochloric acid (1 in 2) dropwise, with stirring, until the solids are dissolved. Cool, and dilute with water to 1000 mL. Store under toluene in a cool place at a temperature NLT 10.
Adenineguanineuracil solution:
Dissolve 200 mg each of adenine sulfate, guanine hydrochloride, and uracil, with the aid of heat, in 10 mL of 4 N hydrochloric acid. Cool, and dilute with water to 200 mL. Store under toluene in a refrigerator.
Polysorbate 80 solution:
100 mg/mL of polysorbate 80 in alcohol
Riboflavinthiamine hydrochloridebiotin solution:
20 µg/mL of riboflavin, 10 µg/mL of thiamine hydrochloride, and 0.04 µg/mL of biotin in 0.02 N acetic acid. Store under toluene, protected from light, in a refrigerator.
p-Aminobenzoic acidniacinpyridoxine hydrochloride solution:
10 µg/mL of p-aminobenzoic acid, 50 µg/mL of niacin, and 40 µg/mL of pyridoxine hydrochloride in a mixture of neutralized alcohol and water (1:3). Store in a refrigerator.
Salt solution A:
Dissolve 25 g of monobasic potassium phosphate and 25 g of dibasic potassium phosphate in water to make 500 mL. Add 5 drops of hydrochloric acid. Store under toluene.
Salt solution B:
Dissolve 10 g of magnesium sulfate, 0.5 g of sodium chloride, 0.5 g of ferrous sulfate, and 0.5 g of manganese sulfate in water to make 500 mL. Add 5 drops of hydrochloric acid. Store under toluene.
Basal medium stock solution:
Dissolve the anhydrous Dextrose and anhydrous Sodium acetate in the solutions previously mixed according to Table 3, and adjust with 1 N sodium hydroxide to a pH of 6.8. Dilute with water to 250 mL.
Table 3
Stock culture of Lactobacillus plantarum:
Dissolve 2.0 g of yeast extract in 100 mL of water. Add 500 mg of anhydrous Dextrose, 500 mg of anhydrous Sodium acetate, and 1.5 g of agar, and heat the mixture on a steam bath, with stirring, until the agar dissolves. Add 10-mL portions of the hot solution to the test tubes, close or cover the tubes, sterilize in an autoclave at 121 for 15 min, and allow the tubes to cool in an upright position. Prepare stab cultures in three or more of the tubes, using a pure culture of Lactobacillus plantarum1 incubating for 1624 h at a temperature between 30 and 37 held constant to within ±0.5. Store in a refrigerator. Prepare a fresh stab of the stock culture every week, and do not use for Inoculum if the culture is more than 1 week old.
Culture medium:
To each of a series of test tubes containing 5.0 mL of Basal medium stock solution add 5.0 mL of water containing 0.2 µg of calcium pantothenate. Plug the tubes with cotton, sterilize in an autoclave at 121 for 15 min, and cool.
Inoculum:
[NoteA frozen suspension of Lactobacillus plantarum may be used as the stock culture, provided it yields an Inoculum comparable to a fresh culture. ] Transfer cells from the Stock culture of Lactobacillus plantarum to a sterile tube containing 10 mL of Culture medium. Incubate this culture for 1624 h at a temperature between 30 and 37 held constant to within ±0.5. The cell suspension so obtained is the Inoculum.
Analysis
Samples:
Standard solution and Sample solution
To similar separate test tubes add, in duplicate, 1.0 and/or 1.5, 2.0, 3.0, 4.0, and 5.0 mL of the Standard solution. To each tube and to four similar empty tubes add 5.0 mL of Basal medium stock solution and sufficient water to make 10 mL.
To similar separate test tubes add, in duplicate, volumes of the Sample solution corresponding to three or more of the levels specified for the Standard solution, including the levels of 2.0, 3.0, and 4.0 mL. To each tube add 5.0 mL of the Basal medium stock solution and sufficient water to make 10 mL. Place one complete set of Standard and sample tubes together in one tube rack and the duplicate set in a second rack or section of a rack, preferably in random order.
Cover the tubes of both series to prevent contamination, and sterilize in an autoclave at 121 for 5 min. Cool, and add 1 drop of Inoculum to each tube, except two of the four tubes containing no Standard solution (the uninoculated blanks). Incubate the tubes at a temperature between 30 and 37, held constant to within ±0.5 until, following 1624 h of incubation, there has been no substantial increase in turbidity in the tubes containing the highest level of Standard during a 2-h period.
Determine the transmittance of the tubes in the following manner. Mix the contents of each tube, and transfer to an optical container if necessary. Read the transmittance between 540 and 660 nm when a steady state is reached. This steady state is observed a few seconds after agitation when the galvanometer reading remains constant for 30 s or more. Allow approximately the same time interval for the reading on each tube.
With the transmittance set at 1.00 for the uninoculated blank, read the transmittance of the inoculated blank. With the transmittance set at 1.00 for the inoculated blank, read the transmittance for each of the remaining tubes. If there is evidence of contamination with a foreign microorganism, disregard the result of the assay.
Calculation:
Prepare a standard concentration-response curve as follows. For each level of the Standard, calculate the response from the sum of the duplicate values of the transmittance (SS) as the difference, y = 2.00 SS. Plot this response on the ordinate of cross-section paper against the logarithm of the mL of Standard solution per tube on the abscissa, using for the ordinate either an arithmetic or a logarithmic scale, whichever gives the better approximation to a straight line. Draw the straight line or smooth curve that best fits the plotted points.
Calculate the response, y = 2.00 SU, adding together the two transmittances (SU) for each level of the Sample solution. Read from the standard curve the logarithm of the volume of the Standard solution corresponding to each of those values of y that fall within the range of the lowest and highest points plotted for the Standard. Subtract from each logarithm so obtained the logarithm of the volume, in mL, of the Sample solution to obtain the difference, X, for each dosage level. Average the values of X for each of three or more dosage levels to obtain X, which equals the log-relative potency, M¢, of the Sample solution.
Determine the quantity, in mg, of calcium pantothenate (C18H32CaN2O10) in the portion of Tablets taken:
antilog M = antilog (M¢ + log R)
Calculate the percentage of the labeled amount of calcium pantothenate (C18H32CaN2O10) in the portion of Tablets taken:
Result = [(antilog M)/N] × 100
Replication:
Repeat the entire determination at least once, using separately prepared Sample solutions. If the difference between the two log-potencies M is NMT 0.08, their mean, M, is the assayed log-potency of the test material (see Design and Analysis of Biological Assays 111, The Confidence Interval and Limits of Potency). If the two determinations differ by more than 0.08, conduct one or more additional determinations. From the mean of two or more values of M that do not differ by more than 0.15, compute the mean potency of the preparation under assay.
Acceptance criteria:
90.0%150.0% of the labeled amount of calcium pantothenate (C18H32CaN2O10)
• Calcium Pantothenate, Method 3
Buffer solution:
Dissolve 10.0 g of monobasic potassium phosphate in 2000 mL of water, and adjust with phosphoric acid to a pH of 3.5.
Mobile phase:
Methanol and Buffer solution (1:9)
Standard stock solution:
0.25 mg/mL of USP Calcium Pantothenate RS in water. Prepare fresh every 4 weeks. Store in a refrigerator.
Standard solution:
40 µg/mL of USP Calcium Pantothenate RS from Standard stock solution diluted with water
Sample solution:
Finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to a nominal amount of 10 mg of calcium pantothenate, to a 250-mL volumetric flask. Add 10 mL of methanol, and swirl the flask to disperse. Dilute with water to volume, mix, and filter.
Chromatographic system
Mode:
LC
Detector:
UV 205 nm
Column:
3.9-mm × 30-cm; 5-µm packing L1
Column temperature:
50
Flow rate:
2 mL/min
Injection volume:
25 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for calcium pantothenate. Calculate the percentage of the labeled amount of calcium pantothenate (C18H32CaN2O10) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of calcium pantothenate (C18H32CaN2O10)
• Niacin or Niacinamide, Pyridoxine Hydrochloride, Riboflavin, and Thiamine, Method 1
[NoteUse low-actinic glassware throughout this procedure. ]
Diluent:
Acetonitrile, glacial acetic acid, and water (5:1:94)
Mobile phase:
A mixture of methanol, glacial acetic acid, and water (27:1:73) containing 140 mg of sodium 1-hexanesulfonate per 100 mL
Standard solution:
[NoteUse USP Niacin RS in place of USP Niacinamide RS for formulations containing niacin. ] Transfer 80 mg of USP Niacinamide RS, 20 mg of USP Pyridoxine Hydrochloride RS, 20 mg of USP Riboflavin RS, and 20 mg of USP Thiamine Hydrochloride RS to a 200-mL volumetric flask, and add 180 mL of Diluent. Immerse the flask in a hot water bath maintained at 6570 for 10 min with regular shaking or using a vortex mixer, until all the solid materials are dissolved. Chill rapidly in a cold water bath for 10 min to room temperature, and dilute with Diluent to volume.
Sample solution:
Finely powder NLT 30 Tablets. Transfer a portion of the powder, equivalent to 10 mg of niacinamide and 2.5 mg each of pyridoxine hydrochloride, riboflavin, and thiamine hydrochloride, to a 50-mL centrifuge tube. Add 25.0 mL of Diluent, and mix using a vortex mixer for 30 s to completely suspend the powder. Immerse the centrifuge tube in a hot water bath maintained at 6570, heat for 5 min, and mix using a vortex mixer for 30 s. Return the tube to the hot water bath, heat for another 5 min, and mix on a vortex mixer for 30 s. Filter a portion of the solution, cool to room temperature, and use the clear filtrate. [NoteUse the filtrate within 3 h of filtration. ]
Chromatographic system
Mode:
LC
Detector:
UV 280 nm
Column:
3.9-mm × 30-cm; packing L1
Flow rate:
1 mL/min
Injection volume:
10 µL
System suitability
Sample:
Standard solution
[NoteThe relative retention times for niacinamide, pyridoxine, riboflavin, and thiamine are about 0.3, 0.5, 0.8, and 1.0, respectively. ]
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for niacin or niacinamide, pyridoxine, riboflavin, and thiamine. Calculate the percentage of the labeled amount of niacinamide (C6H6N2O) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
For formulations containing niacin:
Result = (rU/rS) × (CS/CU) × 100
Separately calculate the percentage of the labeled amount of pyridoxine hydrochloride (C8H11NO3·HCl), riboflavin (C17H20N4O6), and thiamine hydrochloride (C12H17ClN4OS·HCl) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
For products containing thiamine mononitrate, calculate the percentage of the labeled amount of thiamine mononitrate (C12H17N5O4S) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × (Mr1/Mr2) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of niacinamide (C6H6N2O) or niacin (C6H5NO2), pyridoxine hydrochloride (C8H11NO3·HCl), riboflavin (C17H20N4O6), and thiamine as thiamine hydrochloride (C12H17ClN4OS·HCl) or thiamine mononitrate (C12H17N5O4S)
• Niacin, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Solution A:
Transfer 1 mL of glacial acetic acid and 2.5 g of edetate disodium to a 100-mL volumetric flask. Dissolve in and dilute with water to volume.
Extraction solvent:
Solution A and methanol (3:1)
Mobile phase:
0.1 M sodium acetate solution (13.6 mg/mL of sodium acetate in water). Adjust with acetic acid to a pH of 5.4. [NoteA small amount of methanol (up to 1%) may be added to the Mobile phase to improve resolution. ]
Standard stock solution:
1 mg/mL of USP Niacin RS in Extraction solvent
Standard solution:
Transfer 5.0 mL of Standard stock solution to a 25-mL volumetric flask, and dilute with Extraction solvent to volume.
Sample solution:
[NoteThis preparation is suitable for the determination of niacin or niacinamide, pyridoxine, and riboflavin, when present in the formulation. ] Finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to a nominal amount of 2 mg of riboflavin, to a 200-mL volumetric flask. If riboflavin is not present in the formulation, transfer a portion of the powder equivalent to a nominal amount of 2 mg of pyridoxine. If pyridoxine is not present in the formulation, use a portion of the powder equivalent to a nominal amount of 20 mg of niacin or niacinamide. Add 100.0 mL of Extraction solvent, and mix for 20 min, using a wrist-action shaker. Immerse the flask in a water bath maintained at 7075, and heat for 20 min. Mix on a vortex mixer for 30 s, cool to room temperature, and filter. Use the clear filtrate.
Chromatographic system
Mode:
LC
Detector:
UV 254 nm
Column:
4.6-mm × 25-cm; packing L1
Flow rate:
1 mL/min
Injection volume:
20 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 3.0%
[NoteIf necessary, flush the column with methanol between injections. ]
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for niacin. Calculate the percentage of the labeled amount of niacin (C6H5NO2) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of niacin (C6H5NO2)
• Niacinamide, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Solution A, Extraction solvent, Mobile phase, Standard stock solution, Standard solution, Sample solution, Chromatographic system, and System suitability:
Using USP Niacinamide RS in place of USP Niacin RS, proceed as directed in Niacin, Method 2.
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for niacinamide. Calculate the percentage of the labeled amount of niacinamide (C6H6N2O) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of niacinamide (C6H6N2O)
• Pyridoxine Hydrochloride, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Extraction solvent, Mobile phase, and Sample solution:
Prepare as directed in Niacin, Method 2.
Standard stock solution:
0.1 mg/mL of USP Pyridoxine Hydrochloride RS in Extraction solvent
Standard solution:
Transfer 5.0 mL of Standard stock solution to a 25-mL volumetric flask, and dilute with Extraction solvent to volume.
Chromatographic system
Mode:
LC
Detector:
UV 254 nm
Column:
4.6-mm × 25-cm; packing L1
Flow rate:
1 mL/min
Injection volume:
20 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for pyridoxine. Calculate the percentage of the labeled amount of pyridoxine hydrochloride (C8H11NO3·HCl) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of pyridoxine hydrochloride (C8H11NO3·HCl)
• Riboflavin, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Extraction solvent and Sample solution:
Prepare as directed in Niacin, Method 2.
Solution A:
6.8 mg/mL of sodium acetate in water
Mobile phase:
Prepare a mixture of Solution A and methanol (13:7). Add 2 mL of triethylamine per L of the mixture, and adjust with glacial acetic acid to a pH of 5.2.
Standard stock solution:
Transfer 20 mg of USP Riboflavin RS to a 200-mL volumetric flask, and add 180 mL of Extraction solvent. Immerse the flask for 5 min in a water bath maintained at 6575. Mix well, and repeat if necessary until dissolved. Chill rapidly in a cold water bath to room temperature, and dilute with Extraction solvent to volume.
Standard solution:
Dilute 5.0 mL of Standard stock solution with Extraction solvent to 25.0 mL.
Chromatographic system
Mode:
LC
Detector:
UV 254 nm
Column:
4.6-mm × 25-cm; packing L1
Flow rate:
1 mL/min
Injection volume:
20 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas for riboflavin. Calculate the percentage of the labeled amount of riboflavin (C17H20N4O6) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of riboflavin (C17H20N4O6)
• Thiamine, Method 2
[NoteUse low-actinic glassware throughout this procedure. ]
Solution A:
1.88 mg/mL of sodium 1-hexanesulfonate in 0.1% phosphoric acid
Mobile phase:
Solution A and acetonitrile (46:9)
Standard stock solution:
0.1 mg/mL of USP Thiamine Hydrochloride RS in 0.2 N hydrochloric acid
Standard solution:
0.02 mg/mL of USP Thiamine Hydrochloride RS from Standard stock solution diluted with 0.2 N hydrochloric acid
Sample solution:
Weigh and finely powder NLT 20 Tablets. Mix a portion of the powdered Tablets with a volume of 0.2 N hydrochloric acid to obtain a nominal concentration of 0.02 mg/mL of thiamine. Shake for 15 min with a wrist-action shaker, and heat to boiling for 30 min. Cool to room temperature, and filter. Use the clear filtrate.
Chromatographic system
Mode:
LC
Detector:
UV 254 nm
Column:
4.6-mm × 25-cm; packing L1
Flow rate:
2 mL/min
Injection volume:
20 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 3.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas of the major peaks. For products containing thiamine hydrochloride, calculate the percentage of the labeled amount of thiamine hydrochloride (C12H17ClN4OS·HCl) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
For products containing thiamine mononitrate, calculate the percentage of the labeled amount of thiamine mononitrate (C12H17N5O4S) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × (Mr1/Mr2) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of thiamine as thiamine hydrochloride (C12H17ClN4OS·HCl) or thiamine mononitrate (C12H17N5O4S)
• Niacin or Niacinamide, Pyridoxine Hydrochloride, Riboflavin, and Thiamine, Method 3
[NoteUse low-actinic glassware throughout this procedure. ]
Reagent:
25 mg/mL of edetate disodium in water
Mobile phase:
Transfer 0.4 mL of triethylamine, 15.0 mL of glacial acetic acid, and 350 mL of methanol to a 2000-mL volumetric flask. Dilute with 0.008 M sodium 1-hexanesulfonate to volume.
Standard stock solution:
1.5 mg/mL of USP Niacin RS or USP Niacinamide RS, 0.24 mg/mL of USP Pyridoxine Hydrochloride RS, 0.08 mg/mL of USP Riboflavin RS, and 0.24 mg/mL of USP Thiamine Hydrochloride RS in the Reagent, with heating if necessary
Standard solution:
Transfer 5.0 mL of Standard stock solution to a stoppered 125-mL flask. Add 10.0 mL of a mixture of methanol and glacial acetic acid (9:1), and 30.0 mL of a mixture of methanol and ethylene glycol (1:1). Insert the stopper, shake for 15 min in a water bath maintained at 60, and cool. Filter, discarding the first few mL of the filtrate.
Sample solution:
Weigh and finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to 7.5 mg of niacin or niacinamide, 1.2 mg of pyridoxine hydrochloride, 0.4 mg of riboflavin, and 1.2 mg of thiamine hydrochloride, to a stoppered 125-mL flask. Add 10.0 mL of a mixture of methanol and glacial acetic acid (9:1) and 30.0 mL of a mixture of methanol and ethylene glycol (1:1). Insert the stopper, shake for 15 min in a water bath maintained at 60, and cool. Filter, discarding the first few mL of the filtrate.
Chromatographic system
Mode:
LC
Detector:
UV 270 nm
Column:
4.6-mm × 25-cm; packing L7
Column temperature:
50
Flow rate:
2.0 mL/min
Injection volume:
5 µL
System suitability
Sample:
Standard solution
Suitability requirements
Relative standard deviation:
NMT 2.0%
Analysis
Samples:
Standard solution and Sample solution
Measure the peak areas of niacin or niacinamide. Calculate the percentage of the labeled amount of niacin (C6H5NO2) or niacinamide (C6H6N2O) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
Separately calculate the percentage of the labeled amount of pyridoxine hydrochloride (C8H11NO3·HCl), riboflavin (C17H20N4O6), and thiamine hydrochloride (C12H17ClN4OS·HCl) (for products containing thiamine hydrochloride) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × 100
For products containing thiamine mononitrate, calculate the percentage of the labeled amount of thiamine mononitrate (C12H17N5O4S) in the portion of Tablets taken:
Result = (rU/rS) × (CS/CU) × (Mr1/Mr2) × 100
Acceptance criteria:
90.0%150.0% of the labeled amount of niacin (C6H5NO2) or niacinamide (C6H6N2O), pyridoxine hydrochloride (C8H11NO3·HCl), riboflavin (C17H20N4O6), and thiamine as thiamine hydrochloride (C12H17ClN4OS·HCl) or thiamine mononitrate (C12H17N5O4S)
PERFORMANCE TESTS
• Disintegration and Dissolution of Dietary Supplements 2040:
Meet the requirements for Dissolution
• Weight Variation of Dietary Supplements 2091:
Meet the requirements
CONTAMINANTS
• Microbial Enumeration Tests 2021:
The total aerobic microbial count does not exceed 3 × 103 cfu/g, and the combined molds and yeasts count does not exceed 3 × 102 cfu/g.
• Absence of Specified Microorganisms 2022:
Meet the requirements of the tests for absence of Salmonella species, Escherichia coli, and Staphylococcus aureus
ADDITIONAL REQUIREMENTS
• Packaging and Storage:
Preserve in tight, light-resistant containers.
• Labeling:
The label states that the product is Water-Soluble Vitamins Tablets. The label also states the quantity of each vitamin in terms of metric units per dosage unit, and where necessary, the salt form in which it is present. Where more than one assay method is given for a particular vitamin, the labeling states which assay method is used only if Method 1 is not used.
1
ATCC No. 8014 is suitable. This strain was formerly known as Lactobacillus arabinosus 17-5.
2
A suitable cartridge is the Waters Oasis MAX Vac RC cartridge, particle size 30 µm, part 186000371.
3
Pure cultures of Lactobacillus leichmannii (listed as Lactobacillus delbrueckii) may be obtained as No. 7830 from ATCC, 10801 University Blvd., Manassas, VA 20110-2209 (www.atcc.org).
Auxiliary Information
Please check for your question in the FAQs before contacting USP.
USP38NF33 Page 6421
Pharmacopeial Forum: Volume No. 40(5)
|